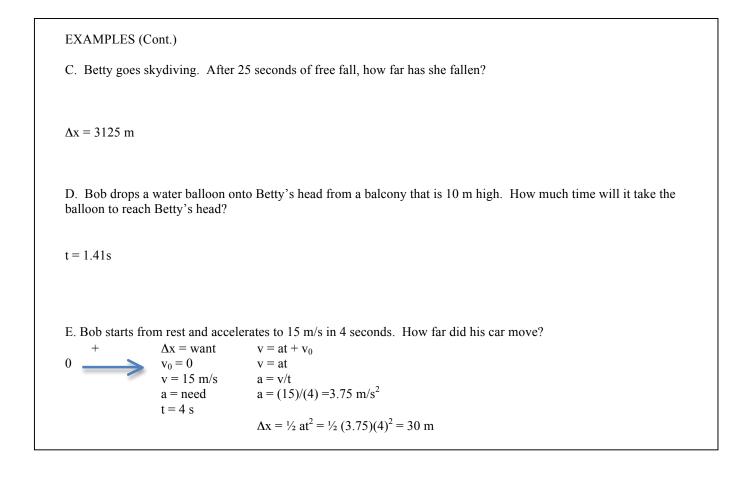
KINEMATICS EQUATIONS

EQUATIONS


POSITION	VELOCITY	ACCELERATION	TIME	
Δx = Displacement (Change in position)	$v_o = initial velocity$	a = acceleration	t = time	
	v = final velocity			
Equation 1: $v = at + v_0$				
Equation 2: $\Delta x = \frac{1}{2} at^2$				
STORY PROBLEM STEPS				
1. Draw a picture. 0 + 4. Eliminate zeros				
(Identify origin and positive direction.)		(Erase all zeros & anything they touch.) 5. Isolate the desired variable. (want variable.)		
2. Alphabet Soup(Set up a list of variables)		(Keep it purely symbolic)	e. (want variable.)	
$\Delta x =$		6. Plug it in.		
$\mathbf{v}_0 =$		(Finally, use numbers)		
v =				
a = t =				
3. Pick an equation.				
······				

EXAMPLES

A. Bob drops a quarter off of the Empire State building. How fast (in m/s) will it be moving 5 seconds? (This could be dangerous!)

B. Susy slams on her brakes because she sees a little old granny crossing the street. After 2.5 seconds her car barely manages to stop in time. How fast was Susy driving (in m/s) if she accelerated $-5m/s^2$?

 $\begin{array}{cccc} + & \Delta x = DC \mbox{ (don't care)} & v = at + v_0 \\ v_0 = want & 0 = at + v_0 \\ v = 0 & -at = v_0 \\ a = -5 \mbox{ m/s}^2 & -(-5)(2.5) = v_0 \\ t = 2.5 \mbox{ s} & v_0 = 12.5 \mbox{ m/s} \end{array}$

ng down a ramp.			
n the ramp.			
DATA COLLECTION: Record the length of the ramp and the time.			
conds.			
DATA ANALYSIS: Use the kinematics equations to determine the acceleration of the car and its final velocity			
nd both equations to figure this out.)			
np?			
of?			